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Abstract

We develop the method of weighted macro{particle tracking (WMPT) for simulating the
time evolution of the moments of the phase space densities of two beams which are coupled
via the collective (strong{strong) beam{beam interaction in the absence of di�usion and
damping. As an initial test we apply this method to study the �- and the �{mode in three
di�erent 1{D limits of the beam{beam interaction. The three limits are : at beams and
transverse motion in the direction of the small width, round beams, and at beams and
motion in the direction of the large width. We have written a code (BBDeMo1D) based on
WMPT, which allows testing all three limits and which is suited for extension to 2 degrees
of freedom.
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1 Introduction

At high energy hadron colliders the need for high luminosity requires highly focused intense
beams at the interaction points (IPs). These high current densities imply a strong interaction of
both beams. Therefore the phase space densities of both counter rotating beams become strongly
coupled. Under simplifying assumptions their evolution may be described by an integro partial
di�erential equation, the Vlasov{equation (VE). Various methods can be used to simulate the
Vlasov{evolution of the phase space densities numerically. The idea of tracking phase space
densities to follow beam evolution in nonlinear �elds was proposed by Kau�mann et al. [KA92].
Here we study a method which is based on computing the expectation values of functions on
phase space with the time dependent density by \weighted macro{particle tracking" (WMPT).
This method, to be explained in more detail in section 2.2, has the great advantage that it
should be easy to implement in every reasonable multiparticle tracking code.

In the strong{strong treatment the collective force between the two beams depends on the
phase space densities. Moreover, the relative strength of the beam{beam interaction depends
on the particle species, the beam energies, the beam emittances, the optics at the interaction
regions, the number of IPs and the phase advance between the IPs. Here we will study simpli�ed
models of the strong{strong case with one spatial degree of freedom and absorb all parameters
of the beam{beam interaction into the linear beam{beam tune shift parameter �.

Some examples of hadron colliders (or concepts for hadron colliders) where the beam{beam
interaction is considered a critical limiting factor for the luminosity are

1. LHC (pp): Both beams are designed to have the same emittances and intensities. The
spot sizes at the IPs will be the same in both planes (�x = �y � 16�m). The beam{beam
tune shift per IP will be � � 3:4 � 10�3 [LH00].

2. Tevatron Run II (p�p): Proton bunches are more intense than the anti{proton bunches so
the anti{protons experience larger beam-beam tune shifts, about ��p � 0:009. The beams
are nearly round at the IP with � � 33�m [TE00].

3. VLHC (pp) / stage I : Like the LHC, the beams are designed to have identical parameters.
The beams will be round and � � 0:002 [VL01].

4. HERA after the luminosity upgrade: HERA is a e�p collider and the electrons/positrons
in principle require a Vlasov{Fokker{Planck treatment. The aspect ratio �x=�y is about

4. The linear beam{beam tune shift per IP will be for the protons �
(p)
x � 1:6 � 10�3 and

�
(p)
y � 0:5 � 10�3 and for the leptons �

(e)
x � 0:034 and �

(e)
y = 0:052 [HO00].

Assuming bunches of length large compared to their transverse dimensions but still small
compared to the �{functions at the IPs and no crossing angle at the IPs, the beam{beam
interaction is intrinsically 2{dimensional, i.e. acts on a 4{D phase space. Nevertheless as a �rst
step one might look at various 1{D limits which require less computing time than 2{D problems.
Typically 3 di�erent limits from 2{D to 1{D can be considered. A at beam and motion in the
\thin" direction, an axially symmetric beam and motion in a \radial" direction, and a at beam



4 2 THE ROTATE{KICK MODEL

and motion in the \thick" direction. The �rst and the third limits have been studied analytically
and to some extent numerically in [CR85] and [YK90, YZ93] respectively and the second limit,
while turning out to be basically inconsistent, leads to a beam{beam force which is of the same
form as the one used in weak{strong simulations for round beams. When studying the centroid
motion of the phase space densities, two modes the sum (�{mode) and the di�erence (�{mode)
have been previously calculated with di�erent characteristic frequencies, depending on the 1{D
model [CR85, YK90, YZ93] or the 2{D aspect ratio [AL99, ZZ99]. One task of the initial stage
of this study is to identify these two modes and see if a fully nonlinear numerical treatment
yields results similar to the analytic approximations made in [CR85, YK90, YZ93]. Moreover
the 2{D simulations for equal vertical and horizontal beam sizes performed in [ZZ99] can be
compared to the axially symmetric limit of our 1{D simulations.

Flat beams seem more suitable for the description of e� beams except perhaps for the VLHC
phase II. On the other hand, the assumption of axial symmetry will, in the following, turn out
to be too strong under the strong{strong premises. Therefore this �rst part of our study can
only be seen as a starting point for further investigations. For this purpose one of the authors
has developed a numerical code (BBDeMo1D) that allows the simulation of all three above cases,
is easily extended to 2{D and o�ers a wide variety of diagnostic features.

Section 2 describes the model of the ring (rotate{kick) we will be using throughout this
paper and the simulation method (WMPT). Section 3 de�nes and describes the three 1{D
limits. In section 4 the accuracy of the method is analyzed in two ways. First, the stability of
an equilibrium solution of the linearized beam{beam force under the fully nonlinear evolution
is discussed. Second, the e�ect of the re{distribution of the trajectories after many turns on the
sampling of the phase space is analyzed. Section 5 contains results of our simulations with the
three limits, in particular we calculate the dipole mode spectra of the beams and look for the
�- and �{modes. We examine the changes in these spectra as the tunes of the two beams are
separated and also as the di�erence in beam{beam parameters is varied. Section 6 gives a short
summary and outlook. The appendices A and B discuss technical details of the simulation for
one of the three limiting 1{D cases and appendix C gives a summary of short de�nitions of the
symbols and conventions used in this paper.

2 The Rotate{Kick Model

This preliminary study is restricted to interactions between 2 short, counter rotating bunches
at a given IP and a linear lattice elsewhere.

The VE that governs the beam{beam interaction is formally symmetric in the two densities.
Therefore we will use the notation that if x represents some quantity of \one beam", then x�

represents the same quantity of \the other beam".

Let  �(~z) �  �(q; p) be the phase space density at azimuth � 2 [0;1) and at the phase space
point ~z � (q; p) and ��(q) :=

R
R
 �(q; p) dp the density in con�guration space, both normalized

so that
R
R2
 � d

2z =
R
R
�� dq = 1 for all �. Let �c denote the azimuth at the collision point.

Then the one turn map (OTM) for turn m to m+1 at the azimuth �+c +m2� directly after the
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IP is
~Tm = ~K[��

��c +m2�
] Æ ~R ; (2.1)

where ~K[��
��c +m2�

] is the map for the nonlinear beam{beam kick due to the collective force which

depends on the spatial density ��
��c

of the other beam directly before the IP and ~R(~z) = R~z,

R 2 SP(2) is the linear map from �+c to ��c of the rest of the lattice. We will often call this the
rotate{kick model. In the following we will suppress the azimuth advance m2� from �0 = 0 to
m2� in the subscripts of � and  and abbreviate ��c +m2� with ��c where the possible variation
from turn to turn is implicitly understood. The beam{beam kick is explicitly

~K[��
��c
](q; p) =

 
q

p+K[��
��c
](q)

!
; K[��

��c
](q) := �

Z
R

G(q; q0)��
��c
(q0) dq0 (2.2)

with some model dependent kernel G(q; q0) and some strength parameter �. It seems reasonable
to assume that �0 = 0 at the IP for the unperturbed linear lattice and hence

R =

�
cos 2�Q0 �0 sin 2�Q0

���10 sin 2�Q0 cos 2�Q0

�
: (2.3)

We can now precisely de�ne our model for the evolution of the phase space density  .
Because the OTM ~Tm is symplectic, conservation of particles gives

 �+c +(m+1)2�(~z) =  �+c +m2�

�
~T�1m (~z)

�
: (2.4)

When we discuss the accuracy of WMPT we will mean relative to the density as de�ned by (2.4).
This can be viewed as the solution of the associated VE to be discussed in the next section.
However, the VE is not well de�ned with a Æ{function kick as we mention in the next section.

Before proceeding we discuss the beam{beam tune shift parameter constructed by linearizing
the beam{beam kick. The spatial coordinates of the two beam centroids are hqi = R

R
q� dq and

hqi� = R
R
q�� dq. One may linearize the beam{beam kick around q = 0 for head{on collisions

(hqi = hqi� = 0) with symmetric densities ( ~K[��
��c
](0; p) = 0) yielding ~K[��

��c
](~z) = K~z + O(~z2)

where

K :=

 
1 0

�[��
��c
] 1

!
; �[��

��c
] :=

d

dq
K[��

��c
]

����
q=0

: (2.5)

The Jacobian of the OTM in (2.1) is then T = K R and a stable solution of the linearized
motion exists i� j cos 2�Q0 +

��0
2 sin 2�Q0j < 1. Then, using the Courant{Snyder functions of

the linearly perturbed lattice �; �;  and the linearly perturbed tune Q, the Jacobian of the
OTM can be brought to the standard form

T =

�
cos 2�Q+ � sin 2�Q � sin 2�Q

� sin 2�Q cos 2�Q� � sin 2�Q

�
(2.6)
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where

Q =
1

2�
arccos

�
cos 2�Q0 +

��0
2

sin2�Q0

�
(2.7a)

= Q0 � ��0
4�

+O(�2�20) (2.7b)

� = �0
sin 2�Q0

sin 2�Q
; � = ��

2
� ;  =

1

�
+
�2�

4
: (2.7c)

This analysis contains the parameter � which depends on ��
��c +m2�

which in principle must be

assumed to be changing from turn m to turn m + 1 because of the nonlinear collective beam{
beam interaction. Nevertheless it gives an intuitive interpretation of the initial strength of a
beam{beam interaction in the sense that the beam{beam tune shift parameter � is de�ned by

Q
���
m=0

�Q0 = � +O(�2�2) ; � := �
�[��

��c
]�0

4�
: (2.8)

Note that a positive (defocusing) �, like it is in the case of pp{interactions, results in a negative
tune shift parameter.

2.1 The Vlasov Equation

In the absence of damping and di�usion the phase space densities  � and  
�
� evolve according

to the coupled Vlasov equations1 (VE)

@�  + @q  � @pH � @p  � @qH = 0 (2.9a)

@�  
� + @q�  

� � @p� H � @p�  
� � @q� H = 0 (2.9b)

where

H[ ; �](~z; ~z�; �) = H0(~z; �) +H�
0 (~z; �) + Æ2�(� � �c)

�
H1[ 

�
��c
](~z) +H�

1 [ ��c ](~z
�)
�

(2.10)

is the Hamiltonian including the collective force and Æ2� is the 2�{periodic Æ{function assuming
one IP. Note that thatH1 depends on the densities directly before the collision. This Hamiltonian
is equivalent to the rotate{kick model (2.4) we are going to use. If H1 contained  � (or  

�
�), the

resulting VE would not be well de�ned since the Æ{function would be multiplied with @qH1 which
is discontinuous at � mod 2� = �c. However, in a real accelerator the beam{beam interaction
takes place over a small �nite range in azimuth and the Æ{function is replaced with a regular
distribution in �. A �nite interaction length would then lead to a thick{lens representation of
the beam{beam interaction. Moreover note that the asterisks on H0 and H1 reect the fact that
in our model \the other beam" may have a di�erent unperturbed tune Q�0 and beam{beam tune
shift parameter ��.

In order to obtain complete knowledge of the coupled multiparticle system one needs, in prin-
ciple, to solve the VE. Numerous analytical approximations and numerical simulation methods
exist and have been applied to the strong{strong beam{beam interaction. To mention only some
of the numerical approaches:

1This is the last time we write equations for the \unstarred" and \starred" beam.
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1. Standard PDE solvers (divided di�erence schemes).

2. Particle{in{cell (PIC) codes [AN98, KR00].

3. The Perron{Frobenius (PF) operator method [WE00, EW01].

4. Weighted macro{particle tracking (yields moments of the distribution).

The �rst two methods are well known and will not be discussed here.

The PF operator method employs the conservation of the phase space density along trajec-
tories according to (2.4). Given a map ~T , the action of the PF operator T on a density  is
simply

T (~z) =  
�
~T�1(~z)

�
(2.11)

and thus (2.4) yields
 �+c +(m+1)2� = T �+c +m2� : (2.12)

The action of T is completely de�ned by the map ~T . Now the densities and T are discretized
on a square n � n grid in phase space, the density being de�ned at o�{grid points by local
polynomial interpolation. The kick is calculated at grid points from values of the density at
grid points. Note that the kick ~K depends only on q and that the kernel K acts on the spatial
density �(q) so that the computation of the kick for all N := n2 grid points is obtained by the
multiplication of an n{vector with an n � n{matrix and thus is an O(N) operation ! Then
 �+c +m2�(

~T�1m (~z)) is computed for grid points ~z by interpolation to give an update of  on
grid points. Note that the interpolation implies an intrinsic smoothing of the representation
of the density on the grid at every step. The PF method has been shown to be stable for the
Vlasov{Fokker{Planck equation (using operator splitting to handle the Fokker{Planck part) in
beam physics [WE00, EW01]. Moreover its main premise, the conservation of the density along
trajectories, is also a key concept for the method of WMPT.

2.2 Weighted Macro{Particle Tracking

Let f(~z) be a (integrable) function on phase space. Then its average at azimuth � is de�ned as

hfi� :=

Z
R2

f(~z) �(~z) d
2z

=

Z
R2

f(~z) 0( ~M
�1
� (~z)) d2z

=

Z
R2

f( ~M�(~z)) 0(~z) d
2z (2.13a)

where ~M� is the map from 0 to � and where in the third equality we have used the fact that the
determinant of the Jacobian of a symplectic map is one. In this study f is chosen to be either
the (suÆciently regular) kernel of the collective force fq(~z

0) := G(q;X ~z0), where the projector X
is de�ned via X ~z := q, or a (v+w)-th order monomial fv;w(~z) := qvpw of the beam distribution.
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In the �rst case the average hfqi��c is the beam beam kick exerted by the \unstarred" beam on
the \starred" beam and in the second case hfv;wi� is a (v + w)-th order moment of the phase
space distribution of the \unstarred" beam. The averages hfqi���c and hfv;wi�� are analogously

de�ned. Eq. (2.13a) means that in order to compute the expectation value of f it suÆces to
compute hf Æ ~M�i0 or algorithmically speaking that:
For some representation of  0 on a (not necessarily square) initial mesh f~zijg 1�i�nq

1�j�np

, an approx-

imation of hfi� is given

hfi� �
nq ;npX
i;j=1

wij  0(~zij) f( ~M�(~zij)) ; (2.14)

where the wij are the weights of the quadrature formula.
In this study an initially square mesh with nq = np =: n, qi�1 � qi = �q, pj�1 � pj = �p

for all i, j and the Gaussian mid{point rule have been used so that the quadrature weights are
particularly simple: wij =: w = �q�p. Note that once the total weights

Wij := wij 0(~zij) (2.15)

are assigned to every trajectory

~�ij(�) := ~M�(~zij) (2.16)

starting at ~zij, the double index ij can be replaced by one linear index k since the result of a
�nite sum does not depend on the ordering of the terms. This weighted macro{particle tracking

(WMPT) procedure only requires forward tracking of macro{particles and as a byproduct to
the distribution moments it produces N := n2 particle trajectories and the associated Poincar�e
sections, etc. Moreover the conservation of probability is guaranteed by construction (set f � 1
in (2.14)).

It has been shown for an example of the VE taken from plasma{physics [WO96, WO99,
WO00], that for �xed � the trajectories obtained by WMPT converge at least linearly in �q +
�p+�� to the exact trajectories of the Hamiltonian system (2.10). However, the upper bounds
on the error given in [WO96, WO99, WO00] depend exponentially on � and are thus not of great
use in the case of multiturn tracking.

Finally it should be mentioned that with WMPT one can obtain an approximation of the
phase space density. Let f~z�� := (q�; p�)g 1���~nq�n

1���~np�n

be a uniform rectangular mesh and

���(~z) :=

�
1 : q� � �q

2 < q � q� +
�q

2 & p� � �p

2 < p � p� +
�p

2
0 : otherwise

(2.17)

be the indicator function of the rectangular \bins"R�� := (q�� �q

2 ; q�+
�q

2 ]�(p�� �p

2 ; p�+
�p

2 ].
These indicator functions de�ne a partitioning of unity, in the sense that

P
�;� ���(~z) = 1 for

all ~z. Then

h���(~z)i� =
Z
R��

 �(~z) d
2z =

Z
R2

���(~z) �(~z) d
2z �

X
i;j

Wij ���(~�ij(�)) (2.18)
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is an approximation of  � on the mesh de�ned by f~z��g. The e�ective smoothness of this
approximation depends on the average number of macro{particles in each \bin". Therefore the
mesh de�ned by the ~z�� has to be coarser than the initial mesh de�ned by the ~zij . In section 4
we will make use of this mesh projection to qualitatively discuss the stability of WMPT. Note
that instead of the indicator function ��� we could have used any other partitioning of unity
which reects the mesh structure.

2.2.1 Application of WMPT to the Rotate{Kick Model

Let ~�ij(�
+
c + 2�(m � 1)) and ~��ij(�

+
c + 2�(m � 1)) be given. Then ~�ij(�

�
c + 2�m) = R~�ij(�

+
c +

2�(m � 1)) and ~��ij(�
�
c + 2�m) = R�~��ij(�

+
c + 2�(m � 1)) give the phase space position of the

(ij)-th particle of each beam just before the kick. The kick on a particle of the \unstarred"
beam at position qij := X ~�ij(�

�
c + 2�m) is given by

K[��
��c +2�m

](qij) = �

Z
R2

G(qij ;X ~z
0)  �

��c +2�m
(~z0) d2z0

= �

Z
R2

G(qij ;X ~z
0)  �0

�
~M��1
��c +2�m

(~z0)
�
d2z0

= �

Z
R2

G
�
qij;X ~M�

��c +2�m
(~z0)
�
 �0(~z

0) d2z0 : (2.19)

We then approximate the kick by

K[��
��c +2�m

](qij) � Kf~��g��c +2�m(qij) := �
nX

k;l=1

G(qij ;X ~�
�
kl(�

�
c + 2�m))W�

kl : (2.20)

The phase space positions after the kick are thus

~�ij(�
+
c + 2�m) = ~Kf~��g��c +2�m(~�ij(�

�
c + 2�m))

~��ij(�
+
c + 2�m) = ~Kf~�g��c +2�m(~�

�
ij(�

�
c + 2�m)) (2.21)

where ~Kf~��g� is the kick map (2.2) with K[��
��c +2�m

] replaced by Kf~��g��c +2�m according to

(2.20).

Note that the kicks must be calculated at N := n2 positions qij and that the calculation
of Kf~��g(q) for �xed q takes in principle N evaluations of the kernel G(qij ;X ~�

�
kl) and N mul-

tiplications with the total weights Wkl. Therefore the kicks require in principle O(N2) ops
where N is the number of macro{particles tracked. Moreover, in particular for 2{D motion
(N ! n4), which is the long term goal of this study anyway, special care has to be taken to
avoid O(N2) = O(n8) methods. Nevertheless, this is the worst case since for certain models
of beam{beam interactions, in 1{D (see section 3.1) as well as in 2{D [GE88], there are more
eÆcient methods to compute the collective force than the O(N2) methods.

Let �q = �p =: �. Then the quadrature error is bounded by C�sk ~M�k where s depends
on the smoothness of the integrand and the order of the quadrature formula, k ~M�k is some
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derivative norm of ~M� and C is a constant independent of � and ~M�. It is to be expected that
k ~M�k increases with � and so it is natural to ask what is the optimal � for a given interval
� 2 [0;�]. Our trajectory calculations indicate that in a typical setup as in section 5, particles
which are started inside 1 �0 �ll that region densely. Thus two particles which start 2 �0 apart
can become close and this can give a jaggedness to an initially smooth density (since trajectories
carry their initial density with them, see (2.4), (2.15) and (2.16)).

However, the situation is not as bad as it might seem since we are calculating expecta-
tion values which potentially can average out any fast oscillating part present in ~M�. We are
investigating optimal � for �xed � and will report that elsewhere.

Finally we compute phase space averages via

hfi� �
X
i;j

Wij f(~�ij(�)) ; hfi�� �
X
i;j

W
�
ij f(~�

�
ij(�)) : (2.22)

This is an O(N) calculation and thus is not an important factor in the op count, as long as
the op count of the kick computation is of higher order in N . The quadrature error in the
calculation of the averages can be discussed as above, however the pessimistic view is ameliorated
by the inherent smoothing due to integration.

If the integrand can be guaranteed to be suÆciently moderately varying, then WMPT, in
contrast to methods that require an explicit mesh at each time step, has the advantage that the
mesh layout depends only on the initial conditions. As an example consider a strictly linear
OTM, in particular no beam{beam interaction and an initial beam distribution with an o�set
w.r.t. the origin (closed orbit) of say x�0 in normalized coordinates. Then in an explicit mesh
method one requires a mesh that is large enough to contain not only the initial distribution up
to some reasonable cut{o� (say c�0) but to contain a circle of (x + c)�0. Alternatively, if one
wants to keep a smaller mesh, one has to recompute the mesh every time step or every few time
steps. For the linear case WMPT has been tested with a large initial o�set and an initial mesh
centered around the beam centroid with width c�0. In this case WMPT carries its mesh along
with the trajectories and the moments computed with WMPT were close to those computed
analytically using (2.4) to a very high precision.

2.3 The Gaussian Source Approximation

In the previous section we have seen that WMPT might become time consuming due to the loss
of the mesh structure and inaccurate due to the build up of rapid variations in  0(~z)f( ~M�(~z); �).
These rapid variations would be averaged away in an exact integration but might degrade the
accuracy of the result of the numerical quadrature. In particular errors in the computation of the
collective beam{beam kick can become dangerous since they can corrupt the complete dynamics
of the coupled two beam system. There is a method [FU98] which smoothes the distribution as
far as the collective force is concerned and at the same time makes its computation O(N). The
method simply consists of computing some set of moments fhqki��g of the actual distribution
and inserting them as parameters in an analytic formula for the beam{beam kick assuming some
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test density ~� eK(q; fhqki�
��c
g) :=

Z
R

G(q; q0)~�(q0; fhqki�
��c
g) dq0 : (2.23)

The form of the \starred" test density in the computation of the collective form stays �xed
| only the change of the parameters reects the evolution of the density of the other beam.
This method is not completely consistent with Vlasov evolution since in general the form of
��
��c
(q�) is di�erent from ~�(q�; fhqki�

��c
; g). Nevertheless it has the bene�t of intrinsic smoothing

(with suitably chosen ~�) and allows the simulation of the evolution with a much larger number
of macro{particles at a still reasonable computation time. Even then it is still not clear which
shape ~� should have and in principle the results to be presented in section 5 suggest that it is not
a Gaussian shape. However, as starting point for this study, whenever we have approximated
the collective kick by Eq. (2.23), we have chosen ~� to be a Gaussian

~�(q;�; �) =
1p
2� �

e�
(q��)2

2�2 : (2.24)

In the following we will call (2.23) with ~� de�ned by (2.24) the Gaussian source approximation

(GSA). This approximation is also called the \quasi{strong{strong" or \soft Gaussian" approx-
imation. We want to stress the point that in the GSA the evolution of the densities of the two
beams are not faked by some phenomenological evolution law for the parameters � and � of
a Gaussian but that they evolve according to (2.4) with a modi�ed collective kick. Only the
collective beam{beam kick is approximated. This method (together with tracking an initially
Gaussian ensemble of macro{particles of identical weight) has been used in 2{D to compute the
frequencies of the �- and �{modes with various aspect ratios �x=�y [ZZ99].

In sections 4 and 5 we will use ensembles of macro{particles, initially on a uniform orthog-
onal mesh and with Gaussian weights Wij, to study the evolution of the distribution moments
employing WMPT with and without the additional Gaussian source approximation.

3 1{D Models of the Beam{Beam Kick

As pointed out in the introduction, one may take at least 3 di�erent limits when breaking down
the 2{D beam{beam interaction into 1{D models.

1. The Chao{Ruth (CR) limit [CR85]: The beams at the IP are assumed to be at, e.g. �x �
�y and the motion is studied in the phase plane associated with y :

Kcr[�
�
��c
](y) = �

Z
R

sgn (y � y0) ��
��c
(y0) dy0 : (3.25)

2. The axially symmetric (AS) limit: The beams are assumed to be round, i.e. �x = �y, and
the motion w.r.t. an arbitrary transverse direction (r) is studied :

Kas[�
�
��c
](r) =

�

r

Z r

0
��
��c
(r0)r0 dr0 : (3.26)
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3. The Yokoya{Koiso{Zenkevich (YO) limit [YK90, YZ93]: Again the beams are assumed to
be at, e.g. �x � �y but the motion in the phase plane associated with x is studied :

Kyo[�
�
��c
](x) = �

Z
|

��
��c
(x0)

(x� x0)
dx0 (3.27)

where
R
{ denotes the Cauchy principal value.

Fig. 1 shows the three limits of beam{beam kickK[�](q) for a standard Gaussian density �(q; 0; 1)
and for � chosen so that the slope at the origin is unity (i.e. �[�] = 1).
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Figure 1: (color) The beam{beam kicks Kcr[�](q), Kas[�](q) and Kyo[�](q) for a standard Gaussian �(q; 0; 1). In
all three cases �[�] is chosen to be 1.

We note that the Chao{Ruth as well as the Yokoya{Koiso{Zenkevich limit seem to be more
suited for e�{colliders. In the ep{collider HERA the ratio �y=�x of e

�{beam is increased at the
IP to about 1=4 by allowing a larger vertical than horizontal �{function.

On the other hand, as it will turn out later, the assumption of axial symmetry is too strong
and therefore possibly not a realistic model of two hadron beams coupled by the collective
beam{beam force.

In the following three subsections we will discuss the three limits in more detail and in
particular derive the explicit dependence of the tune shift parameter � on the strength parameter
� (see (2.2)) under the assumption of an initially Gaussian beam. Then �(�) can be inverted to
obtain the strength for the beam{beam tune shift parameter in the \physical parameters" of a
practical collision scheme

�x;y =
rpN

��x;y
2�L�x;y(�x + �y)

(3.28)

where rp is classical particle radius, L is the Lorentz factor and N� is the number of particles
in the other bunch. Moreover we will derive the form of the beam{beam kick in the GSAeK(q;��

��c
; ��

��c
). The techniques to obtain �(�) and eK are formally identical. The only di�erence
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is that the initial density ��
��c
(q) that is used to compute �(�) is replaced by the test density

~�(q�;��
��c
; ��

��c
) to obtain the GSA. In the following we will denote both densities by �(q;��; ��).

3.1 The Chao{Ruth Force

In the Chao{Ruth case the kick is given by (3.25). The Chao{Ruth model can be considered as
a 1{D Poisson problem Kcr[�](q) = �

R
R
@q eG(q; q0)�(q0)dq0. Here eG(q; q0) := jq � q0j is the 1{D

Green's function which ful�lls @2q
eG(q; q0) = 2Æ(q � q0). Therefore the integral kernel G(q; q0) for

the CR beam{beam kick can be identi�ed with @q eG(q; q0) = sgn (q � q0).

It follows immediately from the form of the kernel that the CR kick on a particle at q is
proportional to the number of particles of beam � at a spatial position less than q minus the
number of particles at a spatial position larger than q. In particular we �nd limq!�1Kcr[�](q) =
�� 6= 0. This appears unphysical only at �rst sight. Since we assume at beams and motion in
the perpendicular plane, the charge distribution of the macro{particles of beam � are actually
represented by planes of constant planar density. Similar to the case of a capacitor with in�nitely
large plates the �eld on a test particle due to each of the charge planes does not depend on the
distance of the particle to the plane.

Moreover the simple structure of the CR kernel G allows the computation of the beam{
beam kick on N macro{particles exerted by an ensemble of N� � N particles, both located at
arbitrary position in con�guration space, with less than O(N2) operations. We can order the
N +N� particles in sequence of increasing q. This can be done, for example by the HEAPSORT

algorithm [NR92], at an expense of O(N logN). Then one starts with the \leftmost" particle
which receives a kick of ��, the next particle receives a kick of �� if it belongs to the same beam
as the \leftmost" particle or ��(1 �Wl) if it belongs to the other beam, and so on. Here Wl

is the weight of the \leftmost" particle. This last step only has an operations count of O(N) so
that the total asymptotic order count of the algorithm is determined by the sorting and hence
O(N logN).

With the Gaussian density �(q;��; ��) := 1=(
p
2���) exp

�
� (q���)2

2��2

�
we �nd

Kcr[�](q) = �

Z
sgn (q � q0) �(q0;��; ��) dq0

= �

�
2 erf

�
q � ��

��

�
� 1

�
(3.29)

where we de�ne erf(q) :=
R q
�1 �(q0; 0; 1)dq0. This formula describes the nonlinear beam{beam

kick in the GSA and determines �(�) for initially Gaussian beams. From Eq. (2.5) and d
dqKcr[�] =

2��(q;��; ��) we �nd

�cr :=
�0

d
dqKcr[�]

���
q=��=0

4�
= (2�)�3=2

��0
��

: (3.30)
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3.2 The Axially Symmetric Force

In the axially symmetric case the kick is given by (3.26). Assume in�nitely long axially symmetric
bunches in both beams, i.e. in cylindrical coordinates with origin at h(x; y)i the spatial density
ful�lls @z� = @�� = 0. Note that the centroid of the beams are not demanded to be on the
closed orbit nor are they demanded to be at identical for both beams. The beam{beam force
after a Lorentz boost into the rest frame of the source beam is then given by the electric �eld
~E =: E(r)r̂ where r̂ is the radial unit vector and r =

p
x2 + y2. Gauss' law yields for any

cylinder Z with radius r and length �lZ
@Z

~E � n̂ dS = �l2�rE

=

Z
Z
�(r) dV = �l2�

Z r

0
�(r0)r0 dr0 (3.31)

where n̂ is the unit vector normal to @Z and thus E(r) = 1=r
R r
0 �(r

0)r0 dr0. Undoing the Lorentz
boost and absorbing all constants into � we �nd (3.26). We can then, under the premise that
the beam stays round, choose an arbitrary transverse direction for r̂. This procedure is applied
usually to the strong source beam in weak{strong simulations.

Unfortunately under the full Vlasov evolution the assumption of axial symmetry is not
selfconsistent. For a 1{D model this means that the consistency constraint that the density is
left{right symmetric about the centroid (��(hqi� + q0) = ��(hqi� � q0) 8q0) is in general not
ful�lled for all �. In particular the above constraint implies that all odd order centered moments
h(q � hqi)2n+1i� vanish identically. In order to obtain a selfconsistent 1{D approximation of a
round beam we modify the beam{beam kick to use the symmetrized density 1

2(��(hqi� + q0) +
��(hqi�� q0)). This is equivalent to taking the averaging of ��(hqi�+x) at +q0 and at �q0. Thus
we can write the beam{beam kick

Kas[�
�
��c
](q) =

1

q � hqi�
��c

Z +jq�hqi�
�
�
c

j

�jq�hqi�
�
�
c

j
��(hqi�

��c
+ q0) jq0j dq0 : (3.32)

One can easily see that for any � such that hjqji exists, the limit q ! �1 of Kas[�](q) vanishes
at least linearly with 1=jq � hqi�j.

The kernel for the AS beam{beam kick is

G(q; q0) =
1

q � hqi�
��c

�(hqi�
��c
; q; q0) jq0 � hqi�

��c
j

�(�; q; q0) :=

�
1 : jq0 � �j < jq � �j
0 : jq0 � �j � jq � �j : (3.33)

Note that here the kernel itself depends on the �rst moment of ��
��c
.

With a Gaussian density �(q0;��; ��) as in section 3.1 the beam{beam kick is

Kas[�](q) =

r
2

�
�

��

q � ��

 
1� e

�
� (q���)2

2��2

�!
: (3.34)
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And analogously to section 3.1

�as =
�

2
(2�)�3=2

�0
��

: (3.35)

As yet, no algorithm for computing the exact AS beam{beam kick (3.32) at a lower order count
than O(N2) has been found. However, the preliminary numerical results of this study, to be
presented in section 5, seem to indicate that once the axial symmetry is put in by hand, the
additional assumption of a Gaussian source does not change the moment calculation signi�cantly.

3.3 The Yokoya{Koiso{Zenkevich Force

In the Yokoya{Koiso{Zenkevich case the kick is given by (3.27). The Yokoya{Koiso{Zenkevich
force has been derived [YK90] from the limit �x � �y in the integral that solves the 2{D
Poisson{problem

Kyo[�](x) = � lim
�y=�x!0

Z
R2

@x eG(x; y; x0; y0)�(2)(x0; y0) dx0 dy0 (3.36)

where eG(x; y; x0; y0) is the 2{D Green's function log(
p
(x� x0)2 + (y � y0)2). Its kernel is singular

and therefore a more careful treatment of the Yokoya{Koiso{Zenkevich force in the context of
WMPT is needed. We do this in appendix A and note here only that the Cauchy principle value
is not very well represented in WMPT unless the GSA is used.

It can be shown with some algebra (see appendix B) that with a Gaussian density �(x;��; ��)
as in sections 3.1 and 3.2 the beam{beam kick is

Kyo[�](x) =

r
�

2

�

��
=W

�
x� ��p
2��

�
; W(z) := e�z

2

�
1 +

2ip
�

Z z

0
et

2
dt

�
; z 2 C : (3.37)

Here W is the complex \error" function [GR81] which is implemented for example in the CERNLIB
[CL01]. And analogously to sections 3.1 and 3.2

�yo =
�

4�

�0
��2

: (3.38)

Note that in the YO limit the beam width �� appears squared in the denominator in contrast
to the CR and the AS limit where it only appears linearly in the denominator. This is because
the kernel has the dimension of q�1 in the YO case and the dimension of 1 in the CR and the
AS cases.

In the last two sections we will only discuss the beam{beam interaction in the pp{case.
Therefore � and thus �cr, �as and �yo are negative by de�nition. Nevertheless we will for conve-
nience rede�ne � in the pp case via Q = Q0 � � +O(�2�2), i.e. � ! �� !

4 Accuracy Considerations for WMPT

The primary error in the method comes from the computation of the kicks as discussed in section
2.2.1. As mentioned there, we are looking at simple models to try to obtain a feel for the optimal
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� given �. Wollman [WO96, WO99, WO00] has given a convergence proof for a 1{D model
used in plasma physics to describe Coulomb{interacting electrons with a �xed ion background.
Here we present some preliminary simulations which give us some con�dence in the method
before proceeding to the simulations of the � and the � mode.

We �rst discus the choice of the mesh size. We then discuss the evolution of the �rst four
moments of q in the case where the two beams are identical and the initial distribution is an
equilibrium of the linearized beam{beam force. Finally we discuss in Fig. 3 and 4 the particle
distribution after 217 = 131072 turns in a special case.

The discretization scale � is (in principle for p and q independently) given by the initial
mesh size divided by the number of macro{particles per dimension. Here and in section 5 we
have chosen normalized coordinates (�0 = 1 ) �q;0 = �p;0 =: �0), a square mesh from �5�0
to +5�0, and between 51 (� = 0:2�0) and 401 (� = 0:025�0) macro{particles per phase space
dimension, initially uniformly distributed on a square mesh for both beams. We cannot expect
dynamics on a spatial scale which is much smaller than the discretization scale � of the initial
mesh to be visible during our simulations. In fact we should consider every e�ect that appears
at a scale � �, e.g. small amplitude uctuations of the position of the beam centroid or of the
square root of the beam emittance, as an artifact of the unavoidable discretization noise.

In the case of the linearized beam{beam force there are stationary densities in which each
beam has the same density. Given a density such that hqi = 0 there is a � de�ned by (2.5). This
� gives the perturbed betatron ellipses de�ned by (2.7c). It can be shown that there are densities
whose equal density contours match the associated betatron ellipses. A special example for such
a stationary solution of the linearized beam{beam force is the double Gaussian

 (~z) =
1

2��2
e�

1
2
~zTC�1~z ; C :=

�
� ��
�� 

�
(4.39)

where the perturbed Courant{Snyder functions are given by (2.7c). This is discussed in some
detail in [EW01]. It is also announced there that in the corresponding Vlasov{Fokker{Planck
system (i.e. with the addition of damping and di�usion due to, for example, radiation) there
exists a unique stationary solution. Numerical simulations suggest that this solution is stable for
small current. It is not yet known if equilibria exist in the radiation free case nor if the equilibria
are stable in the radiation free case with a linearized force. However, the results of WMPT below
are consistent with an approximately stable density over 217 turns. This is also consistent with
the behavior of actual beams in colliders which normally show only a slow emittance growth.

In the CR case which is so far the only one where WMPT can be done at less than O(N2)
without GSA we have studied the evolutions of a distribution that is stationary under the
linearized beam{beam force. Using Eq. (2.7c) with Q0 =

p
(5) � 2, � = 3 � 10�3, �0 = 1 and

�0 = 0 we �nd � � 1:0018, � � �0:0188 and  � 0:9985 just after the kick. Note that this is
still fairly close to the invariant circles of the unperturbed motion. We chose identical double
Gaussians for each beam, given by (4.39). We simulate 217 turns with and without the Gaussian
source approximation with n =51, 101, 201, 401 and with n =51, 101 and 201 macro{particles
per phase space dimension respectively.

Fig. 2 shows the evolution of the centroid amplitude hqim2� as a function of the number
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Figure 2: (color) The centroid position hqi of the linearly matched phase space distribution with WMPT for
the CR beam{beam force. hqi is normalized by �0. Only each 64-th turn is actually printed. Left: \exact"
(O(N logN)) computation of the beam{beam kick (n =51, 101 and 201). Right: Gaussian source approximation
(n =51, 101, 201 and 401).

of turns m. The vertical scale is the logarithm to base 10 of hqim2� in units of �0 and the
horizontal scale is m. All scatter plots start at around 10�16 (DOUBLE PRECISION). With the
\exact" computation of Kcr[�

�] (Fig. 2 left) the centroid amplitude immediately jumps to about
10�5 and then exponentially (linearly in the logarithmic scale) grows until a saturation limit is
reached. With the additional smoothing of the GSA (Fig. 2 right) the centroid amplitude grows
exponentially from 10�16 to a saturation limit.

The decrease in the saturation level with n seems to be signi�cant and the saturation level
itself is consistent with the size of � under the assumption of a quasi{stationary state with
hqi = 0. The logarithmic slope of the envelope seems to be independent of n in the \exact" case
whereas in the case of the GSA the logarithmic slope seems to be roughly proportional to n�3=4.
We do not understand this slope nor the jump from 10�16 to 10�5 in the \exact" case.

The 2-nd order centered moments and and therefore the beam emittance

� :=
p
h(q � hqi)2i h(p� hpi)2i � h(q � hqi)(p� hpi)i2 (4.40)

stay constant on the 0.1|5% level (monotonically improving with decreasing discretization
scale) in all simulations starting with a stationary Gaussian density of the linearized motion. The
centered 4-th order moments are consistent with the assumption of a Gaussian beam (e.g. h(q�
�q)

4i� = 3(h(q � �q)
2i�)2 with �q = hqi�) also on the level of a couple of percent.

The centered 3-th order moments oscillate around 0. Similar to the �rst order moments
their oscillation amplitude grows exponentially with time until it saturates. The saturation
level decreases with decreasing �, but at a higher value then the level for hqi. Note that for
a Gaussian distribution, as for any distribution whose density is even around its mean, all odd
centered moments vanish identically. Thus the relatively high saturation level of the third order
moments, suggests that the GSA should be revised and a di�erent test density which allows odd
centered moments should be used in (2.23).
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Force �=�0 max jhqij=�0 max j1� �=�20 j max jh(q � hqi)3i=�30 j
CR 0.200 0.06 0.05 0.2

0.100 0.025 0.015 0.1
0.050 0.01 0.001 0.05

CR/GSA 0.200 0.025 0.004 0.2
0.100 0.008 0.0008 0.1
0.050
0.025

No saturation in 217 turns

AS/GSA 0.200 0.05 0.0025 0.25
0.100 0.02 0.001 0.12
0.050 0.007 0.0005 0.04

YO/GSA 0.200 0.06 0.01 0.4
0.100 0.015 0.002 0.1
0.050 0.006 0.0004 0.04

Table 1: The approximate bounds of hqi and h(q � hqi)3i and the approximate maximum deviation of the
emittance from �20 for the 4 model forces under numerical study. � is the grid spacing.

In all simulations discussed so far the agreement between hqvpwi� and hqvpwi�� was better
then 10�4 which is not surprising for a evolution equation being symmetric under  $  � and
identical initial conditions for both beams.

Similar simulations exist for the AS and the YO beam{beam limits, both in the Gaussian
Source approximation, and they show qualitatively the same stability properties as the case
of the CR interaction. Moreover they give quantitatively similar results concerning saturation
amplitudes and logarithmic slopes. The approximate saturation levels of the uctuations of the
1-st and 3-rd moments as well as the uctuations in the beam emittance are shown in Tab. 1.

The numerical simulations shown in Fig. 2 and Tab. 1 not only give some con�dence in
WMPT but also seem to indicate the existence of at least quasi{stationary phase space densities
under the full nonlinear collective beam{beam interaction in 1{D.

Since in the WMPT approach the phase space integrals in the expectation values hfi� and
in the beam{beam kicks K[��

��c
] are approximated by sums over the trajectories ~�ij and ~��ij

respectively, it has to be checked whether or not the e�ective distribution of the trajectories leads
to a suÆciently slowly varying coarse grained density in the sense of (2.18) or not. Although
\spikes" and \holes" in the coarse grained density might as well be of physical origin, one might
expect that the numerical accuracy of the numerical representation of the phase space integral
su�ers if the coarse grained density is too rapidly varying.

Fig. 3 (left) shows a scatter plot of all the trajectories of one beam after 217 turns. The initial
mesh was set up identically to the simulations for Fig. 2 with 201 � 201 macro{particles per
beam but the beams were initially exactly round (in the normalized coordinates) and the \other"
beam (not shown) had an initial o�set of 0:1�0. Again the beam{beam tune shift parameter was
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Figure 3: Scatter plots of ~�ij(�)) (left) and (~�ij(�);Wij) after 2
17 turns. q and p are normalized by �0.

chosen to be 3�10�3. The unperturbed tunes were Q�0 =
p
5�2 and Q0 = Q�0�5�10�6. Therefore

the beams are expected to be collectively coupled [AL99, CR85, YK90, YZ93, HO99, ZZ99] and
indeed in section 5 the existence of a �- and a �{mode will be demonstrated. Note that for non{
vanishing beam{beam tune shift parameter, the beams are of course coupled for all tunes. The
phrase \coupled" is used in the literature to describe the situation that for equal unperturbed
tunes the � and � modes are most prominent. In the rigid bunch model of Hofmann [HO99] the
� and � modes are eigenmodes for equal tunes but not for unequal tunes. We will discuss this
in more detail in section 5.

With these maximally \coupled" beams (jQ0 � Q�0j � �) one expects the strongest distor-
tions of the phase space distributions. Nevertheless it has to be noted that in all simulations,
performed for this study so far, the unperturbed tunes were chosen far away from all lower order
resonances of the single particle motion. Simulations close to resonances have to be made in the
near future.

Thus the particles with the largest initial o�set The scatter plot in Fig. 3 (left) shows the
distribution of the trajectories in the phase plane after 217 turns. Note that the initial mesh was
square from �5 to +5�0 in both phase space dimensions. Thus the particles with the largest
initial o�set are at a distance of (

p
52 + 52 � 7)�0 from the center. The distribution appears

uniform except for a halo{like ring of reduced point density. The appearance of this halo{like
ring from about 5�0 to about 7�0 is most likely an artifact of the square initial mesh. We thus
conclude that the macro particles remain uniformly distributed in a coarse grained sense.

Fig. 3 (right) shows a 3{D scatter plot of the macro{particle weights Wij =  0(~zij)wij over
the actual position of the trajectory ~�ij(�)) after 217 = 131072 turns. Since in the current
implementation of the algorithm wij = w = const: and since the initial density was a round
centered Gaussian, the vertical coordinate of each point is a measure for the initial distance

from the origin:
q
q2i + p2j =

p�2 ln(2� 0(~zij)). Obviously the majority of particles that

initially belonged to the core stay relatively close to the core. Otherwise the scatter plot would
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look less like a \bell" and look more like a uniform cloud.
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Figure 4: Mesh projections h���i� after 0 turns (= initial data) (left) and after 217 turns (right). The mesh
that  � was projected on was in both cases given by 41� 41 mesh points from �5 to +5�0 and the initial mesh
of the macro{particles had 201� 201 point in the same range. q and p are normalized by �0. To emphasize shape
of the core only the range from �3:5 to +3:5�0 is shown

Fig. 4 shows projections of  � (2.18) on a mesh of 41�41 mesh points for the initial Gaussian
(left) and after 217 turns (right). The parameters of the simulation were the same as for Fig. 3.2

A scatter plot of the initial data would of course coincide with the surface of Fig. 4 (left). But
after 217 turns the scatter plot 3 (right) is a di�use bell{shaped cloud and the coarse grained
mesh projection gives an indication of the actual density. The mesh{projection of Fig. 4 (right)
looks a little jagged. This is due in part to the particular choice of the partition of unity in this
mesh{projection. This is also due in part to the dynamics which can bring two initially separated
particles, with signi�cantly di�erent densities, close together. However, the mesh projection has
a well de�ned core and each of the core bins has a signi�cant amount of probability assigned
to it. Moreover the projected density at the edge of the core decreases relatively smoothly and
there are no islands outside the core. The coarse grained density as obtained by 217 turns of
WMPT therefore has a slowly varying component (the bell) and a rapidly varying component
(the peaks and valleys). In phase space averages the slowly varying part will be represented
with relative high accuracy and the the rapidly varying part, which contributes only little to the
average, will be represented with relatively low accuracy.

The actual smoothness of the mesh{projection depends on the coarseness of the mesh and
of the smoothing e�ect of the partitioning of unity chosen. The indicator functions ��� are
the simplest ones but they also are those with the least smoothing. Projecting on a mesh with
21� 21 points produces a much smoother surface and increasing the number of mesh points to
81� 81 yields a projection with numerous spikes inside the core region of Fig. 4 (right).

Since WMPT is designed to compute integrals including the density rather than computing
the density itself, we have gained con�dence that the \smoothness" observed in the presented
example, together with the apparent convergence in � observed in Tab. 1 and Fig. 2 seems

2Actually it was the same run. BBDeMo1D comes with various post{processing facilities.
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suÆcient to provide a relatively accurate time evolution of the low order moments on scales well
above the discretization scale and for a �nite number of turns.

It must be noted that a completely mesh based method, like the PF method, always gives
an approximation of  � on the �xed mesh and does not require coarsening.

5 Simulations

One key task of this stage of the study was to identify the �- and �{modes for the Three
di�erent 1{D limits of the beam{beam force and to discuss their dependence on the di�erence of
the unperturbed tunes �Q := Q0�Q�0 and �� := ����. Moreover the onset of Landau{damping
for �Q > � should be observable.

We have performed a large number of simulation runs with di�erent parameter sets and only
a fraction of them can be presented here.

For comparison we will use a trivial extension of the rigid bunch model described in [HO99].
Under the assumption of rigid bunches and a linearized beam{beam force the motion the beam
centroids X := hqi and X� := hqi� is equivalent to a system of two coupled linear oscillators

d2

d�2
X + (Q2

0 +Q0�)X �Q0� X
� = 0 (5.41a)

d2

d�2
X� + (Q�20 +Q�0�

�)X� �Q�0�
�X = 0 : (5.41b)

The eigentunes Q+ and Q� are easily found to be

(Q�)2 =
1

2

�
Q2
0 +Q�20 +Q0� +Q�0�

�

� sgn (�)
q
(Q2

0�Q�20 )2+(Q0� +Q�0�
�)2+2

�
Q2
0(Q0��Q�0��)+Q�20 (Q�0�

��Q0�)
��
:(5.42)

In the case of �� = � this reproduces the result presented in [HO99]

(Q�)2 =
1

2

�
Q2
0 +Q�20 + � (Q0 +Q�0)

�sgn (�)
q
(Q2

0�Q�20 )2 + �2(Q0 +Q�0)
2 + 2� ((Q0+Q�0)(Q0�Q�0)2)

�
: (5.43)

For Q�0 = Q0 we �nd

(Q�)2 = Q2
0 +Q0

� + ��

2
� sgn (�)

����Q0
� + ��

2

���� ; (5.44)

and for simultaneously �� = � and Q�0 = Q0

(Q�)2 = Q2
0 +Q0� � sgn (�)jQ0�j ) Q+

Q�

�
j�j�Q0�!

�
Q0

Q0 + �
: (5.45)
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It was shown in [HO99] that in this last case the eigenmodes to Q+ and Q� correspond to the
�{mode (X +X�) and the �{mode (X �X�). It is not surprising that in this simple model the
�{mode frequency for j�j � Q0 does not contain the Yokoya factor Y (Q� = Q + Y �) which
was predicted to di�er from 1 in [YK90] by means of the linear Vlasov theory. Note that for
Q�0 6= Q0 the �{mode and the �{mode are not the eigenmodes even of the rigid bunch model.

In the following we will discuss the spectra obtained by simulations using WMPT and the
onset of damping of the modes and compare the the most prominent frequencies of the spectra
with the eigentunes Q+ and Q� of the rigid bunch model.

5.1 The dependence of the � and � modes on �Q

In this section we will present results of simulations in the three cases: CR without GSA in
Fig. 5, AS with GSA in Fig. 6 and YO with GSA in Fig. 7. The parameter sets will be basically
identical. In particular the beam{beam tune shift parameter is the same (j�j = 3 � 10�3) for all
simulations in this section. The �gures are structured as follows: The �rst three plots are tune
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Figure 5: (color) Chao{Ruth limit: FFT analysis of the �- and �{mode for �Q = 5 � 10�6, 1:5 � 10�3 and
6:0 �10�3 (clockwise top left to bottom left). Bottom right: time evolution of hqli and �l for the �rst 10,000 turns.
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spectra, i.e. the modulus of the Fourier amplitude computed by a FFT based on 217 turns, for
the �{mode hqi � hqi� (light/green) and the �{mode hqi + hqi� (dark/blue).3 The spectra are
normalized so that the largest amplitude is 1. The thick vertical (red) lines (cursors) that appear
in all spectra are markers e.g. Ql, Qr, Ql � j�j, Qr � j�j, Q+, and Q�. The initial conditions
for the simulations used to compute the spectra are round Gaussians, i.e. Gaussians matched
to the unperturbed optics in normalized coordinates, with �0 = 1 for both beams, one beam
(R) being initially centered around the origin and the other beam (L) having an initial q{o�set
of 0:1�0. The unperturbed tune of beam L was always set to Ql :=

p
5 � 2 � 0:23606798 and

the unperturbed tune of beam R was set to Qr := Ql � 5 � 10�6; 1:5 � 10�3 or 6 � 10�3 for the
top left, top right and bottom left plot respectively. The only exception is the YO case (Fig. 7)
where, because of reasons to be explained later, the top right plot has a �Q of 0:5 �10�3 instead
of 1:5 � 10�3. In all cases the bottom right plot shows the time evolution of hqli and the beam
emittance of beam L for the �rst 104 turns and for �Q = 6 � 10�3. There the initial o�set of
beam L was 1:0�0.

The viewpoint for all simulations is �+c , i.e. the position directly after the IP and the initial
mesh has 201� 201 points uniformly distributed on rectangle in phase space from �5 to +5�0.

Since the CR limit is the only one where a reasonably fast (O(N logN)) algorithm for
the computation of the beam{beam kick without the additional simpli�cation of the Gaussian
source approximation has yet been found, Fig. 5 is the only one which shows the results of
simulations with the \exact" WMPT. In Fig. 5 (top left) the unperturbed tunes are so close
together (�Q = 5 � 10�6 ) Qr � Ql =: Q0 � Q+) that they can not be distinguished on
the chosen scale. The main and clearly visible features in 5 (top left) are the � and �{modes
and the noisy continuum. The continuum originates from the single particle motion. It reects
the incoherent tune spread and falls o� sharply at Q0 � j�j. In addition it goes strongly to
zero as Q ! Q0. In the weak{strong approximation (and for pp collisions) the weak beam has
an amplitude dependent tune spread from Q0 at in�nitely large amplitude to Q0 � j�j at zero
amplitude. Since the initial phase space mesh has a cut{o� at �5�0 and since the outermost
macro{particles carry a basically vanishing weight, the amplitude of the continuum decreases
strongly as Q ! Q0. The �{mode (blue) has a sharp peak at Q0 as expected by the theory
[CR85, YK90, YZ93, AL99, HO99]. The position of the peak amplitude of the �{mode (green)
at 0:231537 � Q0 � 1:51j�j . The linearized Vlasov theory predicts that the �{mode should
emerge from the continuum, but numerical estimates for the CR force with an initial Gaussian
density have to our knowledge not been published. Note that the �{mode has a small peak
at the major peak of the �{mode. Moreover, the �{mode contains the continuum whereas the
�{mode does not. This is a peculiarity of the CR force and we do not have an explanation yet.

Fig. 5 (top right) shows the spectrum with �Q = j�j=2. Very close to Q+, at 0:23545 lies
the most prominent peak of the �{mode. Now both the �- and the �{mode show a continuum
that ends at Qr � j�j. The envelope of the continuum in the �{mode spectrum has a visible
minimum at Ql � j�j (no cursor). The largest peak of the � mode is at a distance of 1:61j�j left

3In the printed black-and-white version the green curves appear relatively light and the blue curves appear
relatively dark. Since we're in the 21-st century, we will put this report on the web (in color of course) and will
identify the curves by their color and not by their darkness.
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of the largest peak of the �{mode. We note that the � and � modes are not the eigenmodes of
the linearized motion when �Q 6= 0. In fact both modes have two prominent peaks at the same
position. As we will see later, this is true for all three forces. Nevertheless, as long as �Q� j�j,
the largest peak of the � mode always between Ql and Qr and the largest peak of the �{mode
is always left of the continuum.

The envelopes of hqi��hqi�� and the beam emittances, which are not shown here, are in both
cases (�Q = 5 � 10�6 and 1:5 � 10�3) basically constant and neither show signi�cant damping of
the centroid motion nor emittance blow{up up to 130000 turns. This situation changes when
�Q = 2j�j (bottom two plots of Fig. 5). Note that both spectra have a strong peak close to Q+.
Moreover the continuum now has two disjoint parts. One continuum ranges from Ql�j�j to Q+.
The second part of the continuum ranges from about Qr � 0:4j�j to Qr � j�j and slightly left of
the continuum at 0:22691 lies the second strong peak of both the � and the � mode. The two
peaks are separated by 2:61j�j. The strongest peak in both spectra is a little left of the Qr�j�j.
We conclude that with this tune separation the characteristic separation of the main peak of
both modes disappears. Nevertheless with the CR force even at �Q = 2j�j there are still 2
distinct main peaks in the spectra. We will see that with the AS and the YO force at this tune
separation the two prominent peaks that correspond to the eigenmodes of the linearized Vlasov
equation have already disappeared. Fig. 5 (bottom right) depicts another key di�erence to the
cases with �Q � j�j. The amplitude (red/dark points) of the centroid motion of the initially
excited beam (L) decays with increasing revolution number on a scale larger but comparable to
1=j�j. The emittance �l (green/light line) grows on the same \time" scale from initially 1�20 to
inbetween 1.4 and 1:5�20 . These e�ects indicate the onset of the so{called Landau{damping and
is predicted by the linearized Vlasov theory [YK90, YZ93, AL99] for �Q� j�j. Note that the
centroid amplitude is not damped to 0 or at least to � = 0:05�0 but uctuates between 0.1 and
0:5�0. Comparing with Fig. 6 and 7 for the AS and the YO limit respectively we see that there
the Landau{damping process leads to a much smaller stationary amplitude and a much more
stable beam emittance. It is not yet clear whether this di�erence between CR on the one hand
and AS and YO on the other hand has a physical meaning or whether it is an artifact of the
algorithm. However, in a simulation with identical parameters and initial condition but using
the Gaussian source approximation for the CR interaction (not shown) the e�ect of Fig. 5 was
qualitatively reproduced.

Fig. 6 shows a qualitatively similar situation for the AS interaction as in Fig. 5. Both plots on
the top show clearly separated �- and �{modes. With �Q = 5�10�6, i.e.Qr � Ql � Q0 � Q+ the
�{mode has its dominant peak at Q0 and the single particle continuum, which is now visible in
both modes, has a sharp boundary at Q0�j�j � Q�. The �{mode appears at about Q0�1:27j�j.
Relative to the CR case it is therefore shifted towards the �{mode (and the continuum). In a
similar simulation without GSA but only with 75� 75 macro{particles4 the �{mode peak which
was much more noisy was even shifted a little further (Q0 � 1:25j�j) towards the �{mode. This
case can be compared to the predictions of the linearized Vlasov theory [YK90, YZ93] and to the
2{D simulations recently performed by Zorzano and Zimmermann [ZZ99]. The linearized Vlasov

4On a modern Sun Ultra{80, BBDeMo1D runs in the AS{mode 4.5h for 201� 201 particles with GSA and 120h
for 75� 75 without GSA!
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Figure 6: (color) Axially symmetric limit: FFT analysis of the �- and �{mode for �Q = 5 � 10�6, 1:5 � 10�3 and
6:0 �10�3 (clockwise top left to bottom left). Bottom right: time evolution of hqli and �l for the �rst 10,000 turns.

theory predicts the separation of �- and �{modes of about 1:21j�j and the 2{D simulations with
an initially round beam represented by 104 non{weighted macro{particles performed in [ZZ99]
yields a separation of about 1:10j�j. At this stage it is not possible to argue whether or not
the linearized Vlasov theory gives a more complete picture than nonlinear tracking studies
using macro{particles and whether the full 2{D treatment in [ZZ99] compensates for their much
smaller number of macro{particles per phase space dimension. So it is just fair to say that the
3 values for the separation of the two collective dipole modes, namely 1:21j�j, 1:27j�j and 1:10j�j
are consistent with one{another.

In the top right plot of Fig. 6 with �Q = 1:5 � 10�3 = j�j=2 we see that the �{mode has its
major peak close to Q+ in between Ql and Qr. The position of the �{mode peak is basically
the same as compared the CR interaction, but slightly shifted from Q+ towards the right. The
�{mode appears at Q� � 1:41j�j but is already very close to the boundary of the single particle
continuum at the leftmost cursor Qr � j�j.

Fig. 6 (bottom left) with �Q = 2j�j does not show any prominent singular peak in either
spectra. The absence of any dominant frequencies in the spectra suggests that the motion of
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the two centroids is basically \decoupled" (in the sense explained in section 4). The plot at
the bottom right of Fig. 6 supports this result. The amplitude of the initially excited beam is
Landau{damped to the discretization scale of the simulation. Note that in comparison with the
CR limit the oscillation once damped into the noise level appears stationary. Also the beam
emittance appears to be stable at about 1.37�20 .
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Figure 7: (color) Yokoya{Koiso{Zenkevich limit: FFT analysis of the �- and �{mode for �Q = 5�10�6, 0:5�10�3

and 6:0 � 10�3 (clockwise top left to bottom left). Bottom right: time evolution of hqli and �l for the �rst 10,000
turns.

Fig. 7 shows the equivalent simulations for the YO limit. As we can easily see in the top
left plot, the �{mode is now separated by 1:14j�j from the �{mode and thus even closer to the
continuum. This again can be compared to the linear Vlasov theory applied in [YK90, YZ93]
and the case of a \at" beam (where \at" means �x=�y = 16) studied numerically in [ZZ99].
Yokoya & Koiso predict 1:33j�j and Zorzano & Zimmerman �nd 1:15. Again we have to be aware
that a quantitative comparison of the three methods is not really possible at this stage, but then
again all three values are mainly consistent. Since the �{mode is so close to the continuum
already with �Q � j�j, it is no big surprise that with �Q = j�j=2 (not shown) the system is
in a Landau{damped regime. In this case the amplitude of the centroid motion is damped to
some intermediate value and the spectra show no clear signature of well de�ned � and � modes.
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Therefore Fig. 7 (top right) shows the spectra of the �- and �{mode for �Q = 0:5 �10�3 instead
of 1:5 �10�3 as in the CR and the AS case. Here the �{mode is about 1:17j�j separated from the
�{mode. For comparison, the rigid bunch model predicts Q+ = 0:23584 (2-nd rightmost cursor)
and Q� = 0:23278 (2-nd leftmost cursor). Note that in this example the continuum ends at
Q� rather than at Qr � j�j. When �Q is increased to 6 � 10�3 (bottom two plots), similar to
the AS limit, the beams centroid motions are more or less completely decoupled and the initial
amplitude of beam L is quickly damped to a value below the discretization scale.

It is worthwhile noting that in all our simulations the tune of the �{mode basically coincides
with Q+ obtained by means of the rigid bunch model, whereas the �{mode doesn't.

5.2 The dependence of the � and � modes on ��

It has been suggested in [AL99] that the �{mode moves back into the continuum when the ratio
�=�� is reduced to less than 0.6. In this section we briey discuss our results in the three 1{D
cases. Fig. 8 contains spectra of the � (light/green) and � mode (dark/blue) for �r=�l = 0:6 (left
column) and 0:1667 (right column) and for CR (top row), AS with GSA (center row) and YO
with GSA (bottom row). Both unperturbed tunes were chosen identical Ql = Qr =

p
5� 2 and

the left beam had an initial q{o�set of 0.1�0. �l = �0:003 was kept constant and �r was varied.
The thick red cursors mark Q+ =

p
5� 2 (left) and Q� (right). Q� is 0:23366 when �r=�l = 0:6

and 0:23431 when �r=�l = 0:1667.

It is easy to see that in all six plots the �{mode has its most pronounced peak at Q+.
Moreover, if �r=�l = 0:1667 then the �{mode peak has either disappeared completely (AS and
YO) or is just a noisy maximum at the edge of the continuum (CR). In all three cases, the
initial excitation is damped, accompanied by a slight emittance growth. When �r=�l = 0:6, the
separations of the � and the �{mode are 1:52j�l+�rj=2, 1:30j�l+�rj=2 and 1:19j�l+�rj=2 for CR,
AS and YO respectively. With this ratio of the beam-beam parameters little or no damping was
observed. The intensity ratio at which the �{mode just emerges from the continuum therefore
depends on the model of the force.

Again we note that in all our simulations the tune of the �{mode basically coincides with
Q+ obtained by means of the rigid bunch model, whereas the �{mode doesn't.

6 Conclusion and Outlook

We have studied the strong{strong beam{beam interaction by means of a method for simulat-
ing the evolution of the moments of the phase space distribution under collective Hamiltonian
forces following the VE. This method, WMPT, has been implemented in a code for simulations
BBDeMo1D.

Three di�erent limits, the Chao{Ruth, the axially symmetric and the Yokoya{Koiso{Zenkevich,
have been studied numerically. The results are qualitatively consistent with the linearized Vlasov
theory as well as with simulations performed by other groups, although they suggest small quan-
titative corrections to the results of the linearized theory.
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Figure 8: (color) FFT analysis of the �- and �{mode for �r=�l = 0:6 (left) and 0:1667 (right). Top row: CR;
center row: AS; bottom row: YO.
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Force �Q �r Q� �Q� Damping

CR 0 0:6�l 1:52(�l + �r)=2 no
0 0:1667�l (1:67(�l + �r)=2)

y yes
5 � 10�6 �l 1:51� no
1:5 � 10�3 �l 1:60� no
6:0 � 10�3 �l (2:61�)y yes

AS/GSA 0 0:6�l 1:30(�l + �r)=2 no
0 0:1667�l | yes

5 � 10�6 �l 1:27� no
1:5 � 10�3 �l 1:41� no
6:0 � 10�3 �l | yes

YO/GSA 0 0:6�l 1:19(�l + �r)=2 no
0 0:1667�l | yes

5 � 10�6 �l 1:14� no
1:5 � 10�3 �l 1:17� no
6:0 � 10�3 �l | yes

Table 2: Summary of results for CR, AS, and YO. y: The di�erence of the two prominent peaks has been taken.

Although we still have concerns about the accuracy of WMPT we believe we have demon-
strated that it is a method which deserves further consideration.

The motion of the beam centroids under the collective force shows two dominant modes if
the separation of the unperturbed tunes �Q is much smaller than the beam{beam tune shift
parameter �. The modes are damped when �Q is signi�cantly larger than �. The relative
separation (Q� �Q�)=� depends not only on the model for the collective force but also on the
separation of the unperturbed tunes �Q. In the intermediate regime the results depend on the
type of the limit under consideration. Moreover, our simulations suggest that the modes are
damped when the ratio �=�� di�ers strongly from 1. An onset of damping for �=�� � 0:6 could
not be observed. The main results of sections 5.1 and 5.2 are summarized in Tab. 2

Only some aspects of the analysis have been presented. The way BBDeMo1D keeps track of
and stores di�erent intermediate physical quantities (e.g. the macro{particle trajectories) allows
a variety of post{simulation data analysis. Various post{processing facilities, e.g. for the Fourier
analysis of the trajectories and for frequency maps for the moments as well as the trajectories
have already been written and tested.

As a next step in the development phase of the code will be extended to 2{D motion. The
basic structure of the code allows this to be done in a straightforward manner. Nevertheless,
with a 4{D phase space computational speed is even more of an issue. Even an O(N) algorithm
for the computation of the beam{beam kick is then already O(n4) for a square mesh of N = n4

particles. Naive treatment of the collective force in the WMPT approach would, without GSA,
lead to an O(N2) = O(n8) algorithm. Fortunately there exist 2{D Poisson solvers with an
asymptotic order count of O(N) [GE88].
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The results obtained with BBDeMo1Dwill be cross checked with the PF operator method[WE00].

Finally we plan to implement long{range (parasitic) interactions, more IPs and complex
�lling schemes.
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A Numerical Representation of the Yokoya{Koiso{Zenkevich

Force

We start with the beam{beam kick assuming we know  �
��c
.

Kyo[�
�
��c
](q) = lim

�&0

 Z +1

q+�

��
��c
(q0)

q � q0
dq0 +

Z q��

�1

��
��c
(q0)

q � q0
dq0

!

= lim
�&0

Z
R2�Aq(�)

 �
��c
(~z0)

q � q0
d2z0

=: I+� (q) + I�� (q) =

Z
R2�Aq(�)

 �
��c
(~z0)

q � q0
d2z0 + lim

�&0

Z
Aq(�)�Aq(�)

 �
��c
(~z0)

q � q0
d2z0 (A.1)

where Aq(x) = R � (q� x; q+ x) is the (open) ribbon of width 2x around q. In the last step we
have split the domain of integration into two parts, In the �rst one (R2 �Aq(�) ! I+� ) we can
perform an ordinary numeric quadrature and in the second one (Aq(�) � Aq(�) ! I�� ) with �
chosen suitably small, we can expand  �

��c
around q w.r.t. q0

 �
��c
(q0; p0) =

LX
l=0

 (l)(q; p0)

l!
(q0 � q)l + O((q0 � q)L+1) ; jq0 � qj < � : (A.2)

Since Aq(�)�Aq(�) is symmetric around q only the terms of  
�
��c
(q0)=(q � q0) which are even in

q � q0 contribute to the integral and we �nally �nd

Kyo[�
�
��c
](q) =

Z
R2�Aq(�)

 �
��c
(~z0)

q � q0
d2z0 � 2

Z
R

(L�1)div2X
l=0

 (2l+1)(q; p0)

(2l + 1)! (2l + 1)
�(2l+1) dp0 + O(�L

0
)

(A.3)
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where L0 = L + 2 if L is odd and L0 = L + 1 if L is even. Thus once  �
��c

is known and its

derivatives w.r.t. q0 can be computed, e.g. by divided di�erences, up to the presumably odd

order L then, the Cauchy principal value in Kyo only adds to the overall numerical error of the
integral to order O(�L+2), where � is of the order of the (initial) mesh size. We note that in the
case of known  �

��c
and correspondingly known ��

��c
we can formally simplify (A.3)

Kyo[�
�
��c
](q) =

�Z +1

q+�
+

Z q��

�1

� ��
��c
(q0)

q � q0
dq0 � 2

(L�1)div2X
l=0

�(2l+1)(q)

(2l + 1)! (2l + 1)
�(2l+1) + O(�L

0
) :

(A.4)
But we de�nitely need  � for WMPT. There we have

Kyo[�
�
��c
](q) = lim

�&0

Z
R2�Aq(�)

 �0(
~M�1
��c

(~z0))

q � q0
d2z0

= lim
�&0

Z
R2�Bq(�)

 �0(~z
0)

q � ~M��c
(q0)

d2z0 (A.5)

=: eI+� (q) + eI�� (q) =

Z
R2�Bq(�)

 �0(~z
0)

q � ~Q � ~M��c
(~z0)

d2z0 + lim
�&0

Z
Bq(�)�Bq(�)

 �0(~z
0)

q � ~Q � ~M��c
(~z0)

d2z0

where Bq(x) := ~M�1
��c

(Aq(x)) is the subset of R
2 so that for all ~z 2 Bq(x): ~M��c

(~z) 2 Aq(x) and

~Q�~z is the projection of ~z onto con�guration space. The integral eI+� (q) = I+� (q) does not produce
any algorithmic complication. It is given as sum over all the weighted macro{particles that at
��c fall outside of Aq�. But eI�� (q) is an integral that not only can have a fairly complicated

domain due to the nonlinearity of ~M�, but the projection ~� of the set Bq(�) on the q{axis even for
arbitrarily small � cannot be guaranteed to be small. Therefore the truncated Taylor expansion
(A.2) that lead to a good approximation of I�� (q) for small � cannot be applied to eI�� (q). As

an example suppose ~M� to be linear and a simple rotation in phase space with angle Q� and
basically irrational Q. Then already after the �rst turn ribbon Bq(�) that is mapped to Aq(�)
has a �nite tilt w.r.t. the q{axis and therefore in principle an in�nite projection ~�. Of course in
a simulation the integrals have a �nite outer cut{o� �pmax and �qmax those are naturally set
to large values, say a couple of beam{�s and therefore do not guarantee small ~�.

Going back one step and using the �rst line of (A.5) does not help since there not  �
��c

but

 �0 Æ ~M�1
��c

has to be expanded, leading to the same problem of the unbounded error.

Note that mathematically (A.5) is still well de�ned since, because of the volume preservation
of ~M�, in the limit �! 0 with the measure of Aq(�) also the measure of Bq(�) goes to zero. Just
its numerical representation has an error which cannot so easily be bounded.

Therefore in WMPT, the integral eI�� (q) is not well represented. In the current version

of BBDeMo1D it is just approximated by eI�� (q) = 0 with a reasonably small �. The reason
why � cannot be chosen arbitrarily small is that in order to get a good approximation of the
Cauchy principle value one needs suÆciently large and basically equal relative densities of many
macro{particles on both sides but close to the boundary of Aq(�). Otherwise single particles
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being close to the boundary and not balanced by a particle \on the other side" will produce a
strong and basically stochastic kick. It turned out during the simulation that the approximation
Kyo[�

�
��c
](q) � eI+� (q) destabilizes the beam in the used parameter range (see section 4). It has

to be noted that the PF method, since it does have knowledge of a numerical approximation of
 �
��c

should in principle be more suitable to handle the Yokoya{Koiso{Zenkevich force.

B The GSA for the Yokoya{Koiso{Zenkevich Force

The GSA for the Yokoya{Koiso{Zenkevich force leads to

Kyo[�](x) =
�p
2� �

Z
|

e�
(x0��)2

2�2

x� x0
dx0 : (B.1)

We now compute the Cauchy principle value using methods from complex variables.

We want to compute

f(x) :=
1p
�

Z
|

e�s
2

x� s
ds : (B.2)

We consider the function

G(z) :=
1

2�i

Z
R

e�s
2

s� z
ds : (B.3)

Clearly G is holomorphic for = z 6= 0. Now let z =: x+ iy. Then using Plemelj's formula [AF97]
we �nd

G(x+ i0�) = �1

2
e�x

2
+

1

2�i

Z
|

e�s
2

s� z
ds : (B.4)

We now de�ne

F (z) := G(z) ; = z < 0 (B.5a)

:= �1

2
e�x

2 � 1

2
p
� i

f(x) ; = z = 0 (B.5b)

:= �e�z2 +G(z) ; = z > 0 (B.5c)

Note that F is holomorphic for = z 6= 0 and continuous for = z = 0. It follows (see, e.g. theorem
3.2.7 of [AF97]) that F is entire. Moreover note that

F (z) =
1

2�i

Z
C

e�s
2

s� z
ds (B.6)

where C is a Landau contour described in Fig. 9.

Di�erentiating G for = z < 0, integrating by parts and using s=(s � z) = z=(s � z) + 1 we
�nd

G0(z) =
1

2�i

Z
R

e�s
2

(s� z)2
ds



33

x
C : y<0

z

y

x
C : y=0

z

y

x

z
C : y>0

y

Figure 9: The Landau contour.

=
1

2�i

 
�e�s2
s� z

�����
+1

�1

�
Z
R

2s e�s
2

s� z
ds

!

=
�1
�i

Z
R

 
e�s

2

s� z
+ e�s

2

!
ds = �2z G(z) � 1p

� i
(B.7)

It follows that

F 0 + 2z F =
ip
�

(B.8)

for all z 2 C since if 2 entire functions are equal on an open subset of C , they are equal on C .
Now because of (B.5b) and (B.2), and since e�s

2
is even whereas 1=s is odd we �nd that f is a

solution of the initial value problem

f 0 + 2x f = 2 ; f(0) = 0 : (B.9)

Note that if one di�erentiates f de�ned by (B.2) and then \bravely" interchanges the di�erentia-
tion with the limit of the Cauchy principle value, then one obtains (B.9) following the procedure
in (B.7).

One easily veri�es that

f(x) = 2 e�x
2

Z x

0
et

2
dt =

p
� =W(x) ; (B.10)

where W is the complex \error" function [GR81, CL01], solves (B.9).

Finally replacing x by (x� ��)=(��
p
2) yields the expression in (3.37).
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C Conventions and Used Symbols

Let X be a quantity of one beam, then X� is the same quantity for the other beam. A more
old{fashioned notation would be using X(1) and X(2). We want to stress the point that the
beam{beam interaction is formally symmetric and thus from any equation including lattice-
and beam{beam e�ects for one beam we immediately obtain the corresponding equation for the
other beam by toggling the asterisk on all relevant parameters and dynamical variables.

Symbol Comment

� generalized machine azimuth
�c azimuth of collision point

f(��c ), f(�
+
c ) lim�%�c f(�), lim�&�c f(�)

q, x, y, r spatial coordinate (in general, hor., vert., \radial")
p conjugate momentum (~z � (q; p))
�0 initial rms beam width

 �(q; p) phase space density (normalized to 1) at �
��(q) spatial density (normalized to 1) at �

~�(q; fparametersg) test density (! GSA)
�(q;�; �) Gaussian with � := hqi, �2 := h(q � �)2i

~R linear lattice map
R Jacobian of linear lattice map

Q0, �0, �0, 0 tune & Courant{Snyder fcts. due to linear lattice
~K beam{beam kick map

K[�](q) kick function (i.e. p! p+K[�](q))
eG(q; q0) Green's function of Poisson eq.

G(q; q0) (CR/YO: � @q eG(q; q0)) beam{beam kernel
eK(q; fparametersg) kick function using test density (! GSA)

K Jacobian of beam{beam kick map
�[�](q) (� (K)21) linearized kick function (i.e. K[�](q) = �[�]q +O(q2))

� linear beam{beam tune shift parameter
� (� �(�)) proportionality factor in beam{beam kick
~T one turn map
T Jacobian of OTM
~M� map from 0 to �
T Perron{Frobenius operator
X projector on spatial coordinate(s)
~zij (� (qi; pj)) mesh point

~�ij(�) (� ~M�(~zij)) trajectory starting at mesh point
Wij total weight of a trajectory

�(�; q; q0) indicator function of [�� q; �+ q]
��;�(~z) indicator function of bin (�; �)

n number of particles per phase space dimension
N number of particles in initial mesh (� n2 for 1 d.o.f.)

R, R2 con�guration space, phase space
A (mathcal font!) some set (e.g. A � R

2 , etc.)R
{ Cauchy principal value

a := b, a =: b, a � b a de�ned by b, b de�ned by a, a and b indentical by def.
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